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Heteroscedasticity

1. NATURE OF HETEROSCEDASTICITY

Heteroscedasticity refers to unequal variances of the error ¢, for different observations. It may be
visually revealed by a "funnel shape” in the plot of the residuals e, against the estimates "Y or

against one of the independent variables X;. Effects of heteroscedasticity are the following

¢ heteroscedasticity does not bias OLS coefficient estimates

¢ heteroscedasticity means that OLS standard errors of the estimates are incorrect (often
underestimated); therefore statistical inference is invalid

¢ heteroscedasticity means that OLS is not the best ( = most efficient, minimum variance)

estimator of B
2. FORMAL DIAGNOSTIC TESTS FOR HETEROSCEDASTICITY

There are many diagnostic tests for heteroscedasticity. Tests vary with respect to the statistical
assumptions required and their sensitivity to departure from these assumptions (robustness).

1. (Optional) Brown-Iorsythe Test
Properties
This test is robust against even serious departures from normality of the errors.

Principle

2

Find out whether the error variance 6. increases or decreases with values of an independent variable

Xy (or with values of the estimates "Y) by the following procedure:

1. split the observations into 2 groups: one group with low values of X; (or low values of "Y)
and another group with high values of X, (or high values of "Y)

2. calculate the median value of the residuals within each group, and the absolute deviations of
the residuals from their group median

3. then do at-test of the difference in the means of these absolute deviations between the two
groups; the test statistic is distributed as t with (n-2) df where n is the total number of cases

An example is shown at the following link:

Exhibit: brown-Forsvthe test with the Afifi & Clark depression data

2. Breusch-Pagan aka Cook-Weisherg Test

Properties
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2

This is a large sample test; it assumes normality of errors; it assumes 6, is a specific function of one

or several Xk'
Principle

Compare the SSR from regressing ei2 on the X, to SSE from regressing of Y on the X, with each SS

divided by its df; resulting ratio is distributed as xz with p-1 df.
This is a large-sample test that assumes that the logarithm of the variance o2 of the error term e isa

linear function of X.
The B-P test statistic is the quantity

% pp = (SSR*/(p-1) / (SSE/n)?
where

SSR* is the regression sum of squares of the regression of e® on the Xy

SSE is the error sum of squares of the regression of Y on the X

When n is sufficiently large and o2 is constant, szP is distributed as a chi-square distribution with 1

df. Large values of szP lead to the conclusion that &2 is not constant.

B-FP Test in STATA

STATA calls it the Cook-Weisberg test. The test is obtained with the option hettest used after
regress. The STATA manual states

hettest [varlist] performs 2 flavors of the Cook and Weisberg (1983) test for

heteroscedasticity. This test amounts to testing t=0 in Var(e) = Gzexp(zt). If varlist 1s not
specified, the fitted values are used for z. If varlist s specified, the variables specified are used
for z.

¢ Exhibit: Cook-Weisberg heteroscedasticity test in STATA with the Afifi & Clark depression
data

References

This test was developed independently by Breusch and Pagan (1979) and Cook and Weisberg
(1983).

e Cook, R. D. and S. Weisberg. 1983. "Diagnostics for Heteroscedasticity in Regression."”
Biometrika 70:1-10.

e Breusch, T. S. and A. R. Pagan. 1979. "A Simple Test for Heteroscedasticity and Random
Coefticient Variation." Econometrica 47:1287-1294.

3. (Optional) Goldfeld-Quandt Test

Properties

Test does not assume a large sample.

http://www.unc.edu/~nielsen/soci709/m12/m12.htm 6/8/2552



soci209 - module 12 - heteroscedasticity & weighted least squares Page 3 of 10

Principle

Sort cases with respect to variable believed related to residual variance; omit about 20% middle
cases; run separate regressions in the low group (obtain SSE; ) and high group (obtain SSEhigh);

test F-distributed ratio SSEhigh/ SSE,,, with (N-d-2p)/2 df in both the numerator and the

denominator (where N is the total number of cases, d is the number of omitted cases, and p is the
total number of independent variables including the constant term).

Reference

o Wilkinson, Blank, and Gruber (1996:274-277).
3. REMEDIAL APPROACH I: TRANSFORMING Y

If heteroscedasticity is found the first strategy is to try finding a transformation of Y that stabilizes
the error variance. One can try various transformations along the ladder of powers or estimate the
optimal transformation using the Box-Cox procedure. One variant of the Box-Cox procedure
automatically finds the optimal transformation of Y given a multiple regression model with p
independent variables. (See STATA reference [R] boxcox. Note that transforming Y can change the
regression relationship with the independent variables X, .

4. (Optional) REMEDIAL APPROACH II: WEIGHTED LEAST SQUARES
(WLS)

Weighted least squares is an alternative to finding a transformation that stabilizes Y. However WLS
has drawbacks (explained at the end of this section). Because of this the robust standard errors

approach explaine in Section 5 below has become more popular.

1. Principle of WLS

Unequal error variance implies that the variance-covariance matrix of the errors g, (52{8} =

012 0 .. |0
2
] G, .. 10
2
0 0 - |5,

is such that the variance ciz of £, may be different for each observation. Errors are still assumed

uncorrelated across observations. Hence the off-diagonal entries of (52{8} are zeroes and the matrix

is diagonal.

2

Assume (for sake of argument) that the &,” are known.

Then the weighted least squares (WLS) criterion is to minimize
_ 2
Qy = T ton WilY5 - By - BiX - - By X 5 1)

where the weights w.=1/6.~ are inversely proportional to the .~ thus WLS gives less weight to

observations with large error variance, and vice-versa.

2. WLS in Practice
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1. Estimating the ;2

. 2 . .
In practice the ¢,” (and the weights w;) are not known and must be estimated. The general strategy

. . 2 .
for estimating the ¢.~ (and w.) is

o cstimate the regression of Y on the X with OLS and obtain the residuals ¢;; then

o ei2 18 an estimator of ciz

o |e;| (the absolute value of ¢;) is an estimator of &,

¢ on the basis of visual evidence (residual plots), regress either ¢ i2 (to estimate the variance
function) or |e,| (to estimate the standard deviation fitnction) on
o one Xk, or
o several Xk, or

o ™Y (from the OLS regression), or
o apolynomial function of any of the above
o the fitted value (estimate) from the regression is an estimate

o v, of the variance Giz (if dependent variable is ei2 ), or

o “s; of the standard deviation o, (if dependent variable is |e;|)
o calculate the weights w; as either

o w, = 1/("s,)” (if "s; was estimated), or

o w; = 1/, (if "v; was estimated)
2. Estimating the WLS Regression

Having estimated the w,, the WLS regression can be done either

¢ using a WLS-capable program, by simply providing the program with a variable containing the
weights, say w; the program automatically minimizes Q_ ; for example, in SYSTAT enter the
command weight=w prior to the regression

¢ using OLS, by multiplying each variable (both dependent and independent, including the
constant) by the square root of the w, corresponding to a given observation and running an

OLS regression without a constant with the transformed data

These steps can be iterated more than once until the estimates converge (= Iteratively Reweighted
Least Squares - IRLS).

3. Examples of WLS Estimation

Example 1

The following exhibits replicate the analysis of blood pressure as function of age in ALSMSe pp. <>;
ALSMd4e pp. <406-407>.

o Exhibit: Scatter plot of blood pressure by age (cf NKNW Figcure 10.1 (a) p. 406)

o Exhibit: Scatter plot of residual by estimate (equivalent here to plot of residual by age ¢f
NENW Figure 10.1 (b) p. 406)

Exhibit: Scatter plot of absolute residual by age (¢f NKNW Figure 10.1(c) p. 406)
Exhibit: Scatter plot of squared residual bv age

Exhibit: SYSTAT proeram replicating weighted least squares estimation of blood presure
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example (cf NKNW pp. 406-407)

Example 2

The following exhibit carries out a WLS analysis of the depression model with the Afifi & Clark
data.

¢ Exhibit: WLS estimation of the depression model

3. Weighted Least Squares (WLS) as Generalized Least Squares (GLS)

In this section we show that WLS is a special case of a more general approach called Generalized
Least Squares (GLS).

1. Matrix Representation of WLS

Assume the variance-covariance matrix of g, 0'2{8} as above, with diagonal elements Giz and zeros
elsewhere.
The matrix W of weights w, = 1/ ciz is defined as W =

Wy 0 .. [0
0 Wo .. [0
0 0 S L

Then the WLS estimator of B, by, is given by

(X'WX)by;; = X'WY (normal equations)
by, = (X'WXY IX'WY

Likewise one can show that

6% {by} = cA(X'WX)!
s2{by,} = MSE,(X'WX)'!
MSEy, = Zw(Y, - “Y)*(n - p)

The WLS estimates can also be obtained by applying OLS to the data transformed by the "square
root” W12 of W, where W2 contains the square roots of the w; on the diagonal, and zeros

elsewhere.
: 1/2 . : 1 24x71/2 _ :
Since W< 1s symmetric and W“W < =W, it follows that

= (XWX) (X'WY) = by,

Thus one can obtain by, by multiplying Y and X by the square root of the weight and applying OLS
to the transformed data.

2. WLS is a Special Case of Generalized Least Squares (GLS)
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The standard regression model Y = Xb + £ assumes that the variance-covariance matrix of the €. is

scalar, that 1s E{gg'} = o°L. Then the OLS estimator
b=X'X)X"Y
has variance matrix

S*{b} = E{bb"} = E{X'X)X'YY'XX'X) !}
b} = (X"X) I X'E{YY" X(X'X)']
S {b} = (X'X) I X'E {ee" 1 X(X'X)!

When the error variance is the same for all observations (homoscedasticity) then the well-known
result for OLS follows:

o {b} = (X'X) X' IX(X'X)! (because E{es'} = 6°1)
o{b} = c(X"X) 1 XX(X'X)!
cz{b} = <52(X'X)'1 (after cancellation)

And the covariance matrix of errors is estimated as before as
sZ{b} = MSE(X'X)"! (estimating 5 as MSE)

and the OLS estimator b is the BLUE of by the Gauss-Markov theorem.

When E{gg'} is not scalar, it must be represented as E{gg'} = Q where Q is a (positive definite)
symmetric matrix. Then OLS is no longer the BLUE of 3. Instead, Aitken's (or Generalized Least
Squares) theorem states that the BLUE of B is

— wvorlvyvlyvioy-l
b o - XQ X IXQlY

where b o 1s termed the generalized least squares (GLS) estimator.

The matrix Q is usually unknown. When it is possible to estimate € from the data, the resulting
estimator is

bEGLS _ (Xu/\Q—IX)—lxv\Q-lY

where "€ denotes the estimated matrix Q. by, o 1s termed the estimated generalized least squares
(EGLS) or feasible generalized least squares (FGLS) estimator.

It may be possible to derive a "square root" of Q! e a symmetric matrix A2 guch that (/\Q'U 2)
(AQ'U 2) =l Then an alternative procedure for EGLS estimation is to premultiply X and Y by

~rV2 and use OLS with the transformed data.
In practice, GLS (or EGLS/FGLS) is used when one has an a priori hypothesis concerning the
structure of Q. For example

¢ in the heteroscedasticity case one assumes that Q is a diagonal matrix with elements Gi2

repressenting the error variance for observation 1. Then one only has to estimate the n error
variances G 12 to estimate Q. One can see that WLS is a special case of EGLS, with ol =w,

e in regression models for time series data with a first order autoregressive error structure the
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entries of the Q matrix decrease exponentially away from the diagonal (see Module 14). On
the basis of this systematic pattern one can estimate the matrix Q and estimate p by EGLS.

e in regression models for panel data in which one has t observations over time on n individual
units, one assumes that the error terms contains components that are specific to each unit
and/or cach time period. Then Q has a distinctive block-diagonal structure that can be
reconstructed by estimating a small number of parameters. Again one can estimate Q and
estimate § by EGLS.

4. Recommendations on WLS
The WLS approach to heteroscedasticity has at least two drawbacks.

1. WLS usually necessitates strong assumptions about the nature of the error variance, e.g. that it
is a function of particular X variable or of Y. Sometimes the assumption appears reasonable
(e.g., error variance is proportional to population size, when the units are areal units); other
times it 1s not.

2. WLS produces an alternative unbiased estimate of [3; but the OLS estimate is also unbiased.
When bor g and by s differ, which one should one choose?

Today researchers tend to prefer the robust standard errors approach to heteroscedasticity explained
next.

5. REMEDIAL APPROACH III: ROBUST STANDARD ERRORS

The following discussion relies heavily on Long and Ervin (2000).
1. Principle of Robust Standard Errors

When heteroscedasticity is present transforming the variables or the use of WLS may be undesirable
when

¢ atransformation of the variables that stabilizes the variances cannot be found

e a suitable transformation is found, but the resulting non-linear model is difficult to interpret
substantively

¢ the weights to use in WLS cannot be found, as when the functional form of the
heteroscedasticity is not known

The alternative strategy can be used even when the form of the heteroscedasticity is unknown. It
consists of

1. estimating b using OLS as usual
2. use a heteroscedasticity consistent covariance matrix (HCCM) to estimate the standard errors

of the estimates; these standard errors are then called robust standard errors

There are 3 variants of the strategy, labelled HC1, HC2, and HC3. To explain the principle of
HCCM start with the usual multiple regression model

Y=XB+¢e

where E{g} = 0 and E{eg'} = Q is a positive definite matrix.
Then the covariance matrix of the OLS estimate b = (X'X)'IX'Y is
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o{b} = (X'X) I X'QX(X'X)!
When the errors are homoscedastic, Q = o2 and the expression for Gz{b} reduces to the usual

2 {b} = c3(X'X)!
OLSCM = s*{b} = MSE(X'X)"! (where MSE = Ze.%/(n-p))

OLSCM denotes the usual OLS covariance matrix of estimates.

2. Huber-White Robust Standard Errors HC1

The basic idea of robust standard errors is that when the errors are heteroscedastic one can estimate
the observation-specific variance Giz with the single observation on the residual as

_ 21 A2
M= (- 0)Y1 =gy
N = diag{ef}
This leads to the HCCM
_ iy [ 2 -1
HC1 = (n/(n-p)) (X'X) ' X'diag{e;"} X(X'X)
where n/(n-p) is a degree of freedom correction factor that becomes negligible for large samples.
HC1 is called the Huber-White estimator (after Huber 1967; White 1980) or the "sandwich"
estimator because of the appearance of the formula. (See it?)
HC1 is obtained in STATA using the robust option (e.g., regress y x1 x2, robust).

3. HC2

An alternative to HC1 proposed by MacKinnon and White (1985) is to use a better estimate of the
variance of g; based on 02{6 4= 02(1 - h.;) where h,; represent the leverage of observation i (diagonal

element of the hat matrix H); the alternative formula divides the squared residual by (1 - h.)
HC2 = (X'X)'X'diag{e, (1 - hy)}X(X'X)"!

HC?2 is obtained in STATA using the he2 option (e.g., regress y x1 x2, he2).
4. HC3

A third possibility has a less straightforward theoretical motivation (Long and Ervin 2000; although
compare the formula for HC3 with that for the deleted residual d, in Module 10). The idea is to

"overcorrect" for high variance residuals by dividing the squared residual by (1 - hﬁ)z_ This yields
HC3 = (X'X)'1X'diag{ei2/(l _ hu)Z}X(X,X)_]

HC3 is obtained in STATA using the he3 option (e.g., regress y x1 x2, he3).

5. Relative Performance of HC1, HC2 and HC3 Robust Variance Estimators
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Long and Erwin (2000) conclude from an extensive series of computer simulations that the HC3
gives the best results overall in small samples in the presence of heteroscedasticity of various forms.
They state

"1. If there is an a priori reason to suspect that there is heteroscedasticity, HCCM-based
tests should be used."

"2. For samples less than 250, HC3 should be used; when samples are 500 or larger,
other versions of the HCCM can also be used. The superiority of HC3 over HC2 lies in
its better properties when testing coefficients that are most strongly affected by
heteroscedasticity."”

"3. The decision to correct for heteroscedasticity should not be based on the results of a
screening test for heteroscedasticity."”

"Given the relative costs of correcting for heteroscedasticity using HC3 when there is
homoscedasticity and using OLSCM tests when there is heteroscedasticity, we recommend that HC3-
based tests should be used routinely for testing individual coefficients in the linear regression
model."

6. Example of Robust Standard Errors Estimation

The following exhibit shows the use of the HC1 (robust), HC2 (he2) and HC3 (he3) robust standard
errors with STATA

o Exhibit (REPEAT): Robust standard error estimation in STATA for the depression model -
Afifi & Clark data

¢ Exhibit: Summary comparison of QLS. HC1. HC2, and HC3 estimation for the depression
model - Afifi & Clark data

6. CONCLUSION: DEALING WITH HETEROSCEDASTICITY

Provisional guidelines for dealing with the possibility of heteroscedasticity are

1. look at the plot of OLS residuals against estimates; if there is a suggestion of a funnel shape
use a test of heteroscedasticity; use the Breusch-Pagan a.k.a. Cook-Weisberg test as it is casy
to do in STATA; use one of the other tests (modified Levene or Goldfeld-Quandt) if you have
areason to, such as a small sample or doubts about normality of errors

2. ifthere is heteroscedasticity look first for a reasonable transformation that might stabilize the
variances of the errors, but without introducing problems of interpretation or upsetting the
functional relationship of Y with the independent variables; if such a transformation is found it
is a desirable solution

3. if a suitable transformation cannot be found, investigate the possibility of WLS; try estimating
the variance function or the standard deviation function; if a convincing function is found (one

that has substantial R and/or one that makes substantive sense, such as when the error
variance is proportional to some measure of the size of the unit) then try WLS; otherwise, use
the robust standard error approach instead (next)

4. if the transformation approach and the WLS approach do not seem promising, then use the
robust standard errors approach; follow the recommendations of Long and Ervin (2000) to
choose between HC1, HC2 and HC3, at least until someone comes up with evidence to the
contrary; alternatively, adopt this approach right away after failing to find a good variance-
stabilizing transformation, bypassing WLS
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